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Introduction
Using the three-dimensional iterative Navier-Stokes-Energy equations solver
described in part I (Vol. 7 No. 4, pp. 297-343), a series of numerical experiments
have been performed in a set of complex three-dimensional geometries of
interest. Each of the geometries has its own importance and is of interest for
different reasons.

First, a cubic cavity of unit length with two static blocks of equal size
symmetrically placed inside as seen in Figure 1 is filled with fluid (Pr = 1.0),
static at t = 0. Suddenly, the surface temperature of both blocks changes to θ
=10, the surface temperature of the bottom, top, left and right walls of the
enclosing cavity becomes θ = 0, and the front and back walls of the enclosing
cavity become insulated. The three-dimensional geometry of this problem can
be seen in Figure 2.

This problem can be viewed as a coarse approximation to the heat transfer
phenomenon that occurs in heat exchangers[1,2]. Also, the problem has
practical importance owing to its obvious relation to the cooling of electronic
equipment inside computers[3-5]. This is a very interesting domain because it
combines many classical problems into one. Both regions A and C share very
similar boundary conditions and geometric properties with the benchmark
problem described in part I of this study. Saitoh and Hirose[6], de Vahl Davis[7],
Le Quéré[8], and many others have analysed such a two-dimensional problem in
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Erratum
Please note that in Part I of this article (HFF, Vol. 7 No. 4) the names of the authors
were inadvertently transposed – the first named author is Rafael Moreno.
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Figure 1.
Geometry for the
problem where two
internal blocks heated
to a constant
temperature are
surrounded by a
containing cavity cooled
to a constant
temperature on its left,
right, top and 
bottom walls
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Figure 2.
Geometry for the
problem where two
internal blocks heated
to a constant
temperature are
surrounded by a
containing cavity cooled
to a constant
temperature on its left,
right, top and bottom
walls, and insulated on
its front and back walls
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detail, while Pepper[9], Moreno[10], and Reddy and Reddy[11], among others,
have extended the study into three dimensions.

Regions D and E resemble the problem of heating from the bottom, known as
Rayleigh-Bénard convection. Studies such as those by Mukutmoni and
Yang[12], Goldhirsch et al.[13], Shaw[3], and Pepper[9] explore this type of flow
in some detail. Moreover, region B resembles the problem of chimney flow.
Works such as those by Asako et al.[14], Hawkins et al.[15], Straatman et al.[16],
and Al-Alusi and Bushnell[17] are representative.

However, very few works have been published on the interaction of all of
these types of flows. It is for that reason that Adlam’s[18] two-dimensional
simulation of such a problem is an important contribution and why it was
decided to broaden the scope of his study by performing numerical experiments
over a larger range of Rayleigh numbers, and by extending it into three
dimensions. Hence, the two-dimensional and three-dimensional aspects of flows
in this geometry have been explored for various Rayleigh numbers between 103

and 105. Although the grids generated are all regular and there is no refinement
near the boundaries of the cavity, the results compare very well with numerical
experiments available in the literature.

Second, the motion of fluids across heated interconnected cavities is an
important problem, because complex fluid systems can be built using these
interconnected cavities as building blocks. For example, the flow of air in a
structure[19,20] can be simulated if we can describe the structure in question as
a collection of interconnected heated blocks of different sizes. Or the
pasteurization process of bottled fluids[21] can be simulated by describing the
container as a collection of interconnected blocks of different cross-sectional
areas.

An example of the use of the heated parallelepiped as a building block is the
two-dimensional problem described by Figure 3 and its three-dimensional
version in Figure 4. Two cubic cavities of different dimensions are inter-
connected as shown. The temperature is then specified at different locations,
while the heat flux is specified at others, as described in the same figure.

A number of numerical and experimental studies of similar domains exist in
the literature. Ku et al.[22] use a pseudospectral method to solve the three-
dimensional Navier-Stokes equations for the flow over a backward-facing step
and several other geometries[23]. The backward-facing step problem can be
viewed as a special case of the geometry we consider. However, they do not
consider thermal effects in their study as we do. Similarly, Reddy and Reddy[11]
use a penalty finite element approach to solve for the three-dimensional
incompressible flow in a square contraction. The domain in question is very
similar to the one we concentrate on but it is tilted 90 degrees clockwise, the
cavity has a different aspect ratio, thermal effects are not taken into account and
different boundary conditions are used. For a detailed study of thermal flows in
this kind of geometry, one has to revert to the two-dimensional case. Evren-
Selamet et al.[24,25] use a fractional step formulation incorporating a second,
order Godunov discretization of the convective terms in order to consider a large
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number of aspect ratios, Rayleigh numbers, Prandtl numbers and Grashof
numbers. This paper attempts to extend the work of these researchers and the
study of thermal flows in this geometry into three-dimensions and a broader
range of boundary and fluid conditions.

Figure 4.
Geometry for the
problem where two
cavities of different sizes
are interconnected, and
the system is heated
from the left on both
cavities, cooled from the
right on both cavities,
and insulated on the
front, back, top and
bottom. The top portion
of the bottom cavity is
also heated, cooled and
insulated in the same
manner 

Figure 3.
Geometry for the
problem where two
cavities of different sizes
are interconnected, and
the system is heated
from the left on both
cavities, cooled from the
right on both cavities,
and insulated on the top
and bottom
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Presented here are the simulation results obtained for both the two-dimensional
and three-dimensional versions of this problem. In the two-dimensional case,
the finest grid used consisted of 41 × 41 grid points, while in the three-
dimensional case, it consisted of 41 × 41 × 17 grid points. These calculations
have been performed assuming a Prandtl number of 1.0 for various values of
the Rayleigh number between 103 and 106. For both geometries of interest, all
numerical experiments were conducted in a CRAY Y-MP supercomputer and
required between one and four hours of CPU time. In all cases, the kinetic
energy of the fluid was monitored throughout the simulation. When the kinetic
energy of the fluid did not change significantly (by more than 2 or 3 per cent
points) in a reasonable amount of time (usually between ten and 20 time steps),
the solution was deemed close to the steady state solution. Moreover, for all the
cases presented, a grid independence study was performed. For all conditions
and Ra numbers, solutions were sought at different mesh resolutions from
coarse (11 × 11 grid points in two dimensions and 11 × 11 × 11 in three
dimensions) to fine (41 × 41 grid points in two dimensions and 41 × 41 × 17 grid
points in three dimensions). All solutions presented in this study are such that
no significant qualitative changes were observed as the resolution increased.

Problem one: cold cavity with two internal heated bodies
Two-dimensional problem
By comparison with the benchmark problem, a series of properties of the
solution can be expected and pointed out a priori. First, the geometry as well as
the boundary conditions are symmetric with respect to the x = 0.5 line, so the
solution is expected to be symmetric with respect to this line as well. Second, the
temperature gradient between the hot inner blocks and the cold surrounding
cavity is large in comparison to that present in the benchmark problem, where
the temperature difference between hot and cold walls was of unit magnitude.
As a result, elevated v velocities for the same Ra are expected.

Moreover, certain fluid motions can be expected. Both the region between the
left block and the cold left wall of the enclosing cavity, and the region between
the right block and the right wall of the enclosing cavity share very similar
boundary and geometric properties with the benchmark problem itself. Hence,
the formation of a circulation cell in both regions is expected. The region
between the two heated blocks is subject to large positive non-dimensional θ
temperatures. This will create larger v velocities directed against the gravity
gradient, so flow directed upwards is expected in this region. Notice how the
two regions between the top wall of both blocks and the top wall of the
surrounding cavity resemble the classic problem of Rayleigh-Bérnard
convection. It is reasonable then to believe that rotation cells will also form in
both these regions. What makes this specific problem interesting is that it is not
obvious how all these effects will combine in the cavity, how they will move the
fluid within the cavity and how they will enhance or degrade the heat transfer
between the internal bodies and the fluid.
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Figure 5, together with Tables I and II, summarize the results of the
numerical experiments performed. Velocity vector plots have been included to
visualize the fluid flow, as well as temperature contour plots to visualize the
heat transfer phenomena involved. The tabulated data include the maximum
fluid velocities in the x and y directions, as well as the minimum, median and
maximum Nusselt numbers for every wall in the cavity and the internal bodies
for every Rayleigh number explored.

Figure 5.
Temperature contours
and vector plots for the
two-dimensional
problem of a cold cavity
with two internal heated
bodies (from top to
bottom: Ra = 103, Ra =
104, Ra = 105)
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Ra
Unknown 103 104 105

umax 8.6850 39.7546 133.7345
vmax 20.8847 57.2681 259.9340

Cavity’s left wall
Nu0 –27.1018 –38.6544 –63.9388
Numax –36.0416 –71.7945 –142.6654
Numin 0.0000 0.0000 0.0000

Cavity’s right wall
Nu0 27.1023 38.5705 63.9393
Numax 36.0583 70.1761 142.6665
Numin 0.0000 0.0000 0.0000

Cavity’s top wall
Nu0 40.9772 107.2169 193.7386
Numax 59.5684 115.5602 247.9880
Numin 0.0000 0.0000 0.0000

Cavity’s bottom wall
Nu0 –17.5672 –8.2928 –5.0390
Numax –21.1617 –10.3218 –6.7731
Numin 0.0000 0.0000 0.0000

Table I.
Important numerical

results of the simulation
of the two-dimensional

problem of the cavity
with internal heated

bodies

Ra
Unknown 103 104 105

Block’s left wall
Nu0 –48.1395 –50.4387 –110.6531
Numax –75.6368 –109.8182 –248.6765
Numin –45.7400 –39.4148 –64.3757

Block’s right wall
Nu0 20.6089 50.2810 81.1948
Numax 67.2966 105.1971 210.2952
Numin 14.7814 34.2702 68.4978

Block’s top wall
Nu0 36.4911 15.2904 21.9310
Numax 51.0695 18.7599 43.7806
Numin 31.6920 10.7688 13.9864

Block’s bottom wall
Nu0 –84.6488 –131.3487 –251.0902
Numax –84.7026 –145.4591 –294.7911
Numin –77.7713 –131.1712 –237.7013

Table II.
Important numerical

results of the simulation
of the two-dimensional

problem of the cavity
with internal heated

bodies
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In order to better describe the behaviour of the fluid system, let us divide the
domain into six different regions A to F as described in Figure 1. This
decomposition into regions is introduced purely to facilitate the descriptions of
the interesting phenomena observed as the Rayleigh number is increased.

At low Ra, the fluid motion can be described as follows. Fluid penetrates
region B from the bottom of the cavity. It rises along the x = 0.5 symmetry line
and splits left and right near the top of the cavity. The fluid then moves over the
heated blocks in regions D and E and penetrates regions A and C from the top
as it moves downward into region F. Once in F, the fluid moves under the heated
blocks and enters region B to complete one cycle of circulation. In addition, even
at low Ra, a counterclockwise rotating cell forms in region A and, owing to the
symmetry of the problem, a clockwise rotating cell also forms in region C.

Nonetheless, as the Ra increases drastic changes in the flow pattern can be
observed. First, the rotation cells in regions A and C become better defined and
stronger, in the sense that the fluid velocities involved increase in magnitude.
Moreover, the centre of rotation of the cell moves away from the heated block
wall towards the centre of the region and the cell elongates in the y direction.
Second, a clockwise rotating cell forms in region D together with a counter-
clockwise rotating cell in region E, both near the x = 0.5 line. These cells force
a change in the direction of flow in region B. The fluid near the block walls in
this region still moves upwards, against the gravity gradient owing to the
strong buoyant force. However, when these additional rotation cells appear,
flow near the x = 0.5 line is reversed, and can penetrate region B from the top as
far as the y = 0.30 line when the Rayleigh number is 105. Finally, the relative
magnitude of the flow velocity in region F progressively decreases as the Ra
increases, especially in the neighbourhood of the x = 0.5 line, in comparison
with the magnitude of the flow velocity in the rest of the cavity. All these
changes are interesting because, in combination, they drastically change the
heat transfer behaviour of the system.

The maximum Nusselt number can be found at the bottom of both heated
blocks. It is in this region where the temperature gradient is largest and, thus,
where thermal energy is most readily lost. In particular, the top wall of the
enclosing cavity also presents a large Nusselt number. Although these two
aspects of the system are important, the overall effect is also interesting. It is
clear from the numerical experiments that as the Ra increases the heat transfer
in most walls of the system studied is enhanced. The isotherm patterns
obtained, as well as the numerical values presented, support this conclusion.
Hot spots in the fluid, which lead to poor heat flow from the hot bodies inside
the cubic cavity become less prominent as the Rayleigh number increases.
Moreover, region B experiences the most change. At a Ra = 103 almost the
whole region has the same temperature, very close to that of the hot blocks. As
the Ra increases, the temperature distribution in the region changes and heat
flow is enhanced. 

Adlam[18] has worked on the same two-dimensional problem for various
Rayleigh numbers. Both qualitative and quantitative agreement is observed
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between his and the results of this study. He has also simulated the flow around
not only two, but four internally heated blocks oriented both horizontally and
vertically. Although the simulation in this study was not extended from two to
four internal bodies, the simulation was extended from two to three dimensions
and a larger range of Rayleigh numbers.

Three-dimensional problem
In the three-dimensional scenario, the geometric arrangement and the boundary
conditions are symmetric with respect to both the yz plane at x = 0.5, and the yx
plane at z = 0.5. The solution is expected to be symmetric with respect to these
planes. For every Ra, the yx cross-section at z = 0.5 is almost identical to the
solution of the analogue two-dimensional problem. One can recognize that the
two-dimensional problem is the same as the three-dimensional problem when
the z dimension is infinite, i.e. the front and back walls are infinitely apart. It can
also be expected that the closer the fluid is to the insulated back and front walls,
the smaller the magnitude of the fluid velocities will be, owing to the imposed
no-slip boundary condition, thus reducing the intensity of convective heat
transfer near the insulated walls.

The numerical experiments suggest that the nature and location of the
rotation cells observed in the two-dimensional case do not change as the
problem is extended into three dimensions. However, it is certainly true that
these cells present three-dimensional aspects not detectable in the two-
dimensional simulations. It is also true that these three-dimensional effects gain
strength as the Rayleigh number increases.

The three-dimensional aspects of the flow will therefore be concentrated on,
that is, the differences rather than the similarities between the two- and three-
dimensional flows.

First, let us extend the regions in Figure 1 backwards in the z direction to
render them three-dimensional. At Ra = 103, three-dimensional effects are
concentrated in regions D and E. Instead of purely rolling about the z axis, the
rotation cells in both regions move fluid three-dimensionally from regions B, D
and E into A and C.

At Ra = 104, these three-dimensional motions persist. In addition, a new
rolling motion around the x axis can be observed across the domain. However,
in other regions of the domain three-dimensional effects are negligible. It is
important to notice how the fluid velocities have increased by a factor of four to
six, and how the temperature distribution at steady state has changed. At this
Rayleigh number, it is clear that the heat transfer has been enhanced mostly in
region B, where at lower Rayleigh numbers the temperature was mostly
uniform. In addition, the heat transfer has been affected in regions D and E. The
new rolling motion about the x axis, previously described, traps some fluid in
regions D and E near the top of the heat-generating blocks, allowing it to heat
up and, hence, reduce the heat transfer in the region. Surprisingly, this adverse
effect creates a larger temperature gradient close to the top wall of the enclosing
cavity, thus enhancing heat loss there. 
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At Ra = 105, the three-dimensional effects observed at Ra = 104 have
intensified, and a set of new flow features can be described. In particular, three-
dimensional effects that were previously limited to regions D and E can be
observed in regions A, B and C. Near the xz plane that splits these regions into
two equal parts, new rotation cells about the x axis can be found. These new
effects move fluid particles away from the insulated front and back walls of the
enclosing cavity towards the central yx symmetry plane. Here, the rotational cells
observed in the two-dimensional simulations dominate and basically distribute
the fluid around the domain. Some will be trapped in the strong cells in regionsD
and E, while some will be forced towards the insulated walls to begin a new cycle.
At this Rayleigh number, the heat transfer is greatly enhanced in regions A, B and
C, where the local Nu has doubled or even tripled, while the heat flow near the top
of the heated blocks has again decreased. It is concluded that the fact that fluid in
this region lies between two strong counter-rotating cells prevents the crucial
mixing required for effective convection of heat.

Some of these effects can be observed in Figures 6-10, while they are
quantified in Tables III and IV.

Problem two: two heated and interconnected cavities of different
sizes
Two-dimensional problem
In the two-dimensional version of this problem, two rectangular cavities of
different sizes are placed one on top of the other. In detail, a square cavity of 
0.4 × 0.4 square units is centred on top of a rectangular cavity of 1.0 × 0.6 square
units, such that the distance from the top left-hand corner of the bottom block
to the bottom left-hand corner of the top block is exactly 0.3 units. These
cavities are discretized in a regular fashion such that the distance between grid
points is ∆x = 1/40 units in the x direction and ∆y = 1/40 units in the y direction.

When the block-to-block interface is removed, an irregular cavity is left
which can be easily discretized with a regularly spaced grid. The cavity is
differentially heated, that is, the left walls of both the bottom and top blocks are
heated to a constant temperature (θ = 0.5), while the right walls of both blocks
are cooled to a constant temperature (θ = –0.5). At the same time, the top wall
of the top block and the bottom wall of the bottom block are insulated. The
remaining segment to the left of the top cavity is heated (θ = 0.5), while the
remaining segment to the right of the top cavity is cooled (θ = –0.5).

In contrast with the problem of the square cavity with two heated blocks,
although there is geometric symmetry with respect to the x = 0.5 line, the
solution will not be symmetric owing to the differences in boundary conditions
across the cavity. However, notice how both cavities are subjected to the same
conditions observed in the benchmark problem. For this reason, the overall
solution is expected to be an unknown combination of the benchmark solutions
for each of the blocks.
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Figure 6.
Temperature contours

for Ra = 105 at different
yx cross-sections (from
top left to bottom right 

z = 0.0625, 0.1250,
0.1875, 0.2500, 0.3125,
0.3750, 0.4375, 0.5000)
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Figure 7.
Vector plots for 
Ra = 105 at different 
yx cross-sections (from
top left to bottom right 
z = 0.0625, 0.1250,
0.1875, 0.2500, 0.3125,
0.3750, 0.4375, 0.5000)
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Figure 8.
Vector plots for 

Ra = 105 at different 
yz cross-sections (from
top left to bottom right

x = 0.0750, 0.1250,
0.1750, 0.3000, 04000,

0.4250, 0.4500, 0.5000)
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Figure 9.
Vector plots for 
Ra = 105 at different 
zx cross-sections (from
top left to bottom right y
= 0.0500, 0.2250, 0.3500,
0.5000, 0.6000, 0.6750,
0.7750, 0.8750)
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Figure 11 is a collection of isotherm patterns and velocity vector plots of the
numerical solution of the two-dimensional version of this problem at various
Rayleigh numbers. For low Rayleigh numbers between 103 and 104, a dominant
v velocity in the y direction is observed near the heated walls in both the top and
bottom cavities. It can be seen that a circulation cell has formed and is centred
close to the centre point of the bottom cavity. It can also be observed that the
effect of the circulation cell extends into the top cavity. In it, the flow enters the
interface near the bottom left corner of the top cavity, moves close to the left wall,

Figure 10.
Nusselt number

surfaces for the internal
heated bodies problem
at Ra = 105. (From top

left to bottom right: left
wall, right wall, top wall

and bottom wall of
enclosing cavity, left

wall, right wall, top wall
and bottom wall of

heated block)
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z
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z
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z
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turns right near the top left corner until it reaches the top right corner, turns
right again and follows the left wall until it leaves through the interface near the
bottom right-hand corner of the top cavity. Owing to the no-slip condition, all the
fluid velocities diminish as the fluid approaches the system boundaries.

For these low Ra, the isotherms in the top cavity are mainly parallel to each
other, indicating that the main heat transfer mechanism in the region is
conduction. A change will be observed from conductive to convective heat
transfer in the region in question as the Ra increases, owing to the increase in
the magnitude of the buoyancy term in the y-momentum equation. Another
interesting fact is that the isotherms are nearly perpendicular to the interface
between the two heated blocks. This indicates that the heat flux at the interface
is almost zero. A change will be noticed in this behaviour as well. With respect
to the bottom cavity, it can be observed that the isotherms are curved, especially
near the top left and top right corners. This is an indication of convective heat
transfer in action. Nevertheless, the curvature of the isotherms is not
pronounced. The isotherm curvature can be used as a measure of the intensity
of convective heat transfer. An increase is expected in the isotherm curvature as
the Ra increases. It is interesting to notice that, even in the presence of an
additional region full of fluid, the temperature contour pattern in the bottom
cavity is very similar to that observed in the two-dimensional benchmark

Ra
Unknown 103 104 105

umax 10.7350 42.0180 146.3050
vmax 20.3288 74.7820 259.7574
wmax 2.9010 19.1087 75.2839

Cavity’s left wall
Nu0 –28.9099 –38.1771 –65.1947
Numax –38.4019 –56.2517 –149.1987
Numin 0.0000 0.0000 0.0000

Cavity’s right wall
Nu0 28.9099 38.1771 65.1947
Numax 38.4019 56.2512 149.1991
Numin 0.0000 0.0000 0.0000

Cavity’s top wall
Nu0 35.9753 57.2146 136.6531
Numax 59.1149 124.9805 216.9999
Numin 0.0000 0.0000 0.0000

Cavity’s bottom wall
Nu0 –21.5739 –11.6334 –6.7294
Numax –25.1210 –16.8746 –9.4115
Numin 0.0000 0.0000 0.0000

Table III.
Important numerical
results of the simulation
of the three-dimensional
problem of the cavity
with internal heated
bodies
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problem for the same Rayleigh number. Even at these low Rayleigh numbers, it
is clear that heat is most readily lost by the cold right wall of the top cavity, as
evidenced in Table V.

From the nature of the problem, one might expect the formation of a
circulation cell in the top cavity also. The boundary conditions are very similar
to those for the bottom cavity, so why has a circulation cell not formed in the
region? This study has only worked with a specific aspect ratio between the top
and bottom cavities for different values of the Rayleigh number. Nevertheless,
Evren-Selamet[25] has worked with different aspect ratios, Rayleigh numbers
and Prandtl numbers as well and, when his data are examined, it appears that
the formation of the cell in the smallest cavity is dependent on both the aspect
ratio, the Ra and the Pr. Our choice of Pr and aspect ratio seems to preclude the
formation of a circulation cell in the region.

As previously expressed, as the Ra increases, changes in the flow and the
heat transfer phenomena are observed. The heat flow through the cold right
wall of the top cavity increases steadily, as well as that of the hot left wall of the
bottom cavity. In fact, the local median Nusselt number increases by a factor of
between seven and ten, as the Ra varies between 103 and 106. Other than that,
the maximum fluid velocities steadily increase throughout the domain. No
rotation cell is observed to form in the top cavity, while the cell in the bottom
cavity elongates in the x direction as it did in the two-dimensional benchmark
problem until, at Ra = 106, the initially well-formed rotation cell in the centre of
the bottom cavity splits into two, less organized rotation cells. The most
dramatic change is, however, the obvious transition from mostly conductive to

Ra
Unknown 103 104 105

Block’s left wall
Nu0 –45.6476 –43.3403 –93.8591
Numax –75.9551 –95.9861 –225.7839
Numin –20.5397 –19.3242 –14.6539

Block’s right wall
Nu0 14.2900 44.3693 70.4122
Numax 59.8298 96.3870 196.2367
Numin –1.4143 2.0602 14.4599

Block’s top wall
Nu0 38.3017 19.6896 34.1396
Numax 66.8484 56.6772 61.2042
Numin 21.4135 15.6943 15.2040

Block’s bottom wall
Nu0 –74.3842 –110.2744 –200.8954
Numax –81.6641 –126.9324 –260.7970
Numin –24.2493 –27.8494 –45.6382

Table IV.
Important numerical

results of the simulation
of the three-dimensional

problem of the cavity
with internal heated

bodies
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Figure 11.
Temperature contours
and vector plots for the
two-dimensional
problem of two
interconnected cavities
(from top to bottom: 
Ra = 103, Ra = 104, 
Ra = 105, Ra = 106)
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mostly convective heat transfer in both cavities. This is clear from the curved
isotherm pattern and the temperature distribution (see Figures 12 and 13). In
addition, an increase in heat transfer across the interface between two blocks is
of interest. The effects observed in this region lead to the conclusion that at low
Ra one could treat the top cavity and the bottom cavity almost as two
independent heat transfer problems by replacing the open interface by an
insulated wall. However, as the Rayleigh number increases, this simplification
becomes unreasonable and one must treat both cavities as a unit. 

Three-dimensional problem
It is important to recognize the relation of both the two-dimensional and three-
dimensional problems in order to understand both the similarities and the

Ra
Unknown 103 104 105 106

umax 1.7392 14.3952 66.1818 197.8826
vmax 2.1761 12.6104 59.7307 203.5376

Bottom cavity’s hot left wall
Nu0 0.9201 2.0012 5.7983 11.0567
Numax 1.0955 2.4918 7.3071 15.1915
Numin 0.0000 0.0000 0.0000 0.0000

Bottom cavity’s hot left top wall
Nu0 –0.7845 –1.3384 –3.1998 –7.2396
Numax –3.2069 –2.9324 –5.4084 –8.8265
Numin 0.0000 0.0000 0.0000 0.0000

Top cavity’s hot left wall
Nu0 2.3761 1.7295 1.6761 3.4765
Numax 3.6512 2.5459 4.0510 5.5477
Numin 2.3539 1.6689 0.8786 1.1993

Top cavity’s cold right wall
Nu0 2.7204 3.7210 7.9446 14.3236
Numax 4.2729 5.2669 9.1219 18.2384
Numin 2.6265 3.3693 6.7546 12.0839

Bottom cavity’s cold right top wall
Nu0 0.6920 0.8176 1.6527 1.9957
Numax 3.5031 3.6341 6.0228 6.6965
Numin 0.0000 0.0000 0.0000 0.0000

Bottom cavity’s cold right wall
Nu0 0.7845 0.6038 1.3377 3.4196
Numax 0.8449 0.7681 2.0760 4.8417
Numin 0.0000 0.0000 0.0000 0.0000

Table V.
Important numerical 

results of the two-
dimensional version 

of the problem where 
two parallelepiped 
cavities of different 

sizes are differentially
heated while

interconnected



HFF
7,5

516

differences between both versions of the same problem. The two-dimensional
problem can be viewed as the corresponding three-dimensional problem where
the front and back walls of both interconnected blocks are located at infinity.
Owing to that fact, the solutions of the two-dimensional problem for a specific

Figure 12.
Temperature contours
or isotherms for 
Ra = 106 at different yx
cross-sections (from top
left to bottom right 
z = 0.1000, 0.2000,
0.3000, 0.4000, 0.5000)
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Ra were expected to be very similar to that of the three-dimensional problem at
the yx cross-section at z = 0.5 for the same Ra. On the other hand, the three-
dimensional solution at yx cross-sections will differ from the two-dimensional
solution the closer it is to the front and back walls of the irregular cavity.

As with the benchmark problem, as the Ra increases, an increase is expected
in the fluid velocities, and a progressively more important role played by the w
velocity in the z direction. This increase in velocity has been observed together

Figure 13.
Vector plots for Ra = 106

at different yx cross-
sections (from top left  to
bottom right z = 0.1000,

0.2000, 0.3000, 0.4000,
0.5000)
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with an increase in heat flux near the heated walls, hence a larger local Nu is
expected as the Ra increases.

At low Rayleigh numbers (i.e. 103, 104), the three-dimensional effects are
concentrated mostly near the front and back walls of the lower cavity and near
the two-block interface. These effects are also stronger in the region between the
yz planes at x = 0.4 and x = 0.6. In this three-dimensional region of the bottom
cavity, fluid near the front and back walls is forced towards the centre of the
cavity as if a weak three-dimensional circulation cell is being formed. In
addition, the fluid is also forced in and out of the smaller upper cavity by
sudden contraction and expansion, generating larger than average velocities.

At a Rayleigh number of 105, the fluid flow pattern is more interesting. The
circulation cell along the z axis centred in the bottom cavity elongates in the x
direction as in the two-dimensional case. It is is now so strong that some of the
fluid particles near its centre will only flow in the bottom cavity. Concurrently, a
larger irregular rotational cell encompasses the first one. Fluid close to the system
boundaries penetrates the top cavity from the left and exits it from the right.
However, no independent rotational cell is observed in the top cavity. As in the
two-dimensional case, formation of such an independent cell seems to be directly
related to the aspect ratio between both cavities[25]. Our choice of aspect ratio
seems to preclude such a formation even at large Rayleigh numbers.

As with lower Ra, the fluid accelerates as it moves from the larger bottom
cavity to the smaller top cavity. This effect is three-dimensional owing to the
geometric structure of the domain (i.e. the three-dimensional domain in
question is not merely a projection of the two-dimensional one along the z axis,
but represents a similar but different environment). The weak three-
dimensional effects near the front and back walls still force fluid away from
these walls and towards the centre of the cavity, where the two-dimensional
effects take over and force the particles either to flow inside the bottom cavity or
travel back and forth between the bottom and top cavities. It is only at larger
Rayleigh numbers that a change in this flow pattern is clearly visible.

At Ra = 106, the same circulation cells observed at Ra = 105 rotating along
the z axis are still present but have gained intensity. The sudden contraction
and expansion of the fluid penetrating and exiting the top cavity still cause the
strongest three-dimensional effects in the domain. However, in contrast with the
flow pattern observed at lower Rayleigh numbers, strong three-dimensional
effects such as circulation cells can be observed in the vicinity of the two-block
interface, especially near the regions where the fluid penetrates the top cavity
and even more so in the region where the fluid suddenly expands as it leaves the
top cavity into the bottom one. As can be seen in Figure 14, the sudden
expansion of fluid leaving the top cavity creates a reversal of flow in its vicinity,
and as a result, a set of two three-dimensional rotational cells is formed. These
cells extend in the x direction from x = 0.6 to x = 0.95. Their effect can also be
seen in Figure 15. Notice how the three-dimensional effects of the sudden
expansion of the flow from the top cavity to the bottom one are clearly observed
near the left wall of the bottom cavity. In contrast, notice how the effects of the
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Figure 14.
Vector plots for Ra =

106 at different yz cross-
sections (from top left to
bottom right x = 0.0500,

0.0275, 0.3750, 0.6250,
0.7250, 0.8000, 0.8500,

0.9500)
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Figure 15.
Vector plots for Ra =
106 at different zx cross-
sections (from top left to
bottom right y = 0.0500,
0.0225, 0.3250, 0.4750,
0.5500, 0.5750, 0.62500,
0.7250)
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sudden contraction of the flow from the bottom cavity to the top one are mostly
localized in the region next to the left wall of the top cavity. In both cases, notice
how the three-dimensional effects become negligible as we approach the
insulated bottom face of the bottom cavity and the insulated top face of the top
cavity. These observations are a final indication that the three-dimensional
effects in the particular domain of two interconnected cavities of different sizes
are a result of the sudden expansion and sudden contraction which the enclosed
fluid experiences.

What is the impact of these three-dimensional motions in the way heat is
transferred in the cavity? The major effect is that the circulation cells formed in
the bottom cavity owing to the sudden expansion help the convective process
such that the Nusselt number near the top right corner of the bottom cavity is
three times larger in the three-dimensional case than the Nusselt number in the
same region in the two-dimensional case (see Figure 16). This is clearly a
significant heat transfer enhancement which can be directly attributed to the
three-dimensional aspects of the flow. It is also evident after examining Table
VI that as the Rayleigh number increases, the local Nusselt number values
generally increase.

In Evren-Selamet et al.’s paper[24] and in Evren-Selamet’s doctoral
dissertation[25] the problem of buoyancy-driven flow inside an irregular two-
dimensional cavity is thoroughly studied for different aspect ratios and
different values of both the Rayleigh number and the Prandtl number. Our two-
dimensional results are for an aspect ratio not treated in their study.
Nevertheless, there is no qualitative discrepancy between our results and theirs

Figure 16.
Nusselt number
surfaces for the

irregular cavity problem
at Ra = 106. (From top

left to bottom right: left
wall of bottom cavity,

right wall of bottom
cavity, left portion of top

wall of bottom cavity,
right portion of top wall

of bottom cavity, left
wall of top cavity and

right wall of top cavity)
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in terms of the fluid behaviour in the cavity. In fact, some test simulations were
performed on exactly the same aspect ratio which they described, but with a
much coarser mesh and a slightly larger Prandtl number (Pr = 1.0 instead of
Pr = 0.71). The only difference between this study’s approach and theirs is that
their formulation seems to introduce some artificial diffusion, resulting in an
overall smoothing of the steady state solution. Finally, the extension of the
problem to three-dimensions has been found to be straightforward and
computationally feasible with the current computer resources available.

Concluding remarks
The study presented here concerning the fluid motion and the heat transfer
phenomena present in three-dimensional flows in complex geometries leads to

Ra
Unknown 103 104 105 106

umax 1.9775 14.9898 56.8450 196.1168
vmax 2.2192 11.6043 54.7735 190.0148
wmax 0.6284 3.2433 11.5250 49.0390

Bottom cavity’s hot left wall
Nu0 0.9374 1.6409 5.0564 10.5800
Numax 1.0767 2.3462 7.0479 16.2553
Numin 0.0000 0.0000 0.0000 0.0000

Bottom cavity’s cold right wall
Nu0 0.8190 0.7518 2.1417 4.6855
Numax 0.9028 1.0388 3.7062 12.2888
Numin 0.0000 0.0000 0.0000 0.0000

Bottom cavity’s hot left top wall
Nu0 –0.2716 –0.3763 –0.4059 –0.2009
Numax –1.9770 –2.0712 –3.1454 –5.4183
Numin 0.0000 0.0000 0.0242 0.1076

Bottom cavity’s cold right top wall
Nu0 0.2577 0.4872 1.7557 1.5311
Numax 2.0348 3.1508 7.4138 15.4721
Numin 0.0000 0.0000 0.0000 –0.0765

Top cavity’s hot left wall
Nu0 2.4103 1.8333 1.3282 2.0542
Numax 2.8277 2.3306 2.6743 4.1665
Numin 2.3594 1.5698 0.8723 0.6757

Top cavity’s cold right wall
Nu0 –2.6657 –3.2981 –7.0156 –14.5328
Numax –3.1127 –5.0498 –8.8226 –19.5933
Numin –2.5506 –2.7999 –4.4344 –5.8716

Table VI.
Important numerical 
results of the three-
dimensional version
of the problem where 
two parallelepiped 
cavities of different sizes
are differentially heated 
while interconnected
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certain conclusions regarding some of their general properties as well as some
of the properties of the solution scheme:

• At low Rayleigh numbers, two-dimensional motions dominate, three-
dimensional motions are almost negligible and conduction is the
dominating heat transfer mechanism.

• As the Rayleigh number increases, the momentum transfer in the y-
direction increases, leading to an increase in the magnitude of all fluid
velocities, an increase in the importance of the three-dimensional
motions and a transition from conductive to convective heat transfer.

• In regions where three-dimensional aspects of the flow become more
pronounced as the Rayleigh number increases, heat transfer is generally
enhanced as observed by comparing the values of the local Nusselt
number at different Ra and between the two and three-dimensional cases.

• Although the formation of new rotational cells in the flow is enhanced by
the increase in Rayleigh number, a direct connection between rotational
cell formation and cavity aspect ratios also seems to exist.

• Use of a generalized point successive over-relaxation (PSOR) iterative
scheme allows use of the same solver for all the governing equations and
a variety of boundary conditions, making the code more readable,
compact and general.

• The PSOR iterative scheme allows for good vectorization in the CRAY Y-
MP environment as well as for excellent control of convergence and error
criteria.

• As expected, the solution of the elliptic pressure equation is the most
time-consuming operation in the simulator. In fact, the cost of solving the
pressure equation is strongly problem dependent. It was decided to solve
for the pressure at every time step at the expense of more computational
time required, even when other possible approaches were available.
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